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ABSTRACT:  Modelling avalanche release is a long lasting challenge. Despite a general 
agreement on the basic mechanisms responsible for avalanche release, deterministic models 
suffer from a lack of reliable data due to spatial and temporal variability of snow cover properties. 
On the other hand, field observations reveal that starting zone sizes are organized into power law 
statistical distributions characterized by a universal exponent. Yet, statistical approaches 
developed so far, that essentially are binary cellular automata, only consider the shear failure of 
the weak layer, and cannot take into account slab rupture. As a consequence, they cannot 
reproduce the observed power law exponent. This is why the present model is a two-threshold 
multi-state cellular automaton, that incorporates both the shear failure of the weak layer and the 
rupture of the slab. It reproduces field data on statistical distributions of starting zones of snow 
slab avalanches, but also of other gravitational failures. It can be used to model blast-triggered 
and skier triggered avalanche, or to provide initial conditions in avalanche flow simulations in 
particular slopes. Possible applications of the automaton to educational purposes may be 
contemplated. 
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1.  INTRODUCTION  
  

Avalanche starting zones sizes is a 
key information used as an input in 
simulations of avalanche flow. It can be 
characterized by both the width L (or the area 
L2) of the starting zone and by the slab depth 
H. These parameters that are intimately linked 
to the details of the triggering mechanisms, 
are known to be highly variable. In contrast 
with a current belief, a careful statistical 
analysis [Faillettaz (2003), Faillettaz et 
al.(2002)] showed that H and L values were 
not correlated, as illustrated in Figure 1: 
avalanches with a given depth H can display a 
wide range of L values, and conversely. 
However, despite such an apparent 
randomness, values retrieved from field 
measurements were shown to exhibit 
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so-called scale-invariant statistics, i.e. to obey 
well defined power law distributions [Louchet 
et al. (2002)], N(L) ∝ L-b and N(H) ∝ H-b’ where 
N(L) and N(H) are the number of avalanches 
of width L and of depth H (see Figure 2). 
Despite the fact that H and L values are not 
correlated, the exponents of the corresponding 
power law distributions are very close to each 
other: b ≈ b'= 3.4 ± 0.1 for probability 
distribution functions of lengths (i.e. non 
cumulative distributions), corresponding to 2.4 
for cumulative length distributions. 
Interestingly, all available avalanche data align 
on the same power law, whatever the winter 
season, the mountain range, or the gully they 
start from. Such a "universal" character is 
remarkable, suggesting a common and quite 
general explanation.  
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Figure 1: H vs L values for 3450 avalanches, 
recorded in La Plagne and Tignes ski resorts. 
Each single point corresponds to one or 
several avalanches. 
 

Numerous studies were undertaken 
on the basis of numerical simulations [Bak et 
al. (1988), Hergarten (2002), Nuñez Amaral 
and Lauritsen (1997), Olami et al. (1992), 
Sornette (2000), Vespignani and Zapperi 
(1998), Hergarten and Neugebauer (2000), 
Densmore et al. (1998)] to understand the 
origin of this scale invariance and the value of 
the scaling exponent of widths (L) or areas 
(L2) distributions. Such approaches, based on 
Bak's sand pile model, qualitatively reproduce 
the observed scaling behaviour. However, the 
exponents do not usually agree with 
observations, except if other ingredients 
(dissipation, heterogeneities, or any tuning 
parameter) are introduced.  

This was also the case of our first 
cellular automaton [Faillettaz et al. (2004)] in 
which cells were found in two possible states 
(non-damaged (0) or damaged (1)), depending 
on whether the load experienced by a given 
cell was respectively smaller or larger than a 
given shear threshold characteristic of the 
weak layer strength. The mechanics of basal 
crack growth was taken into account through 
load transfers between a damaged cell and its 
non-damaged first neighbours, that may in 
turn change the state of some of the 
neighbour cells, and so forth. This model 
reproduced the scale invariant size distribution 
of avalanches. However, the power law 
exponent did not match field observations, the 
main reason being that, owing to the binary 
character of the automaton, the weak layer  

 

 
Figure 2: Cumulative length distributions for L 
and H, retrieved from both artificial and natural 
triggerings (La Plagne and Tignes ski resorts), 
giving a similar exponent of 2.4 

failure was the only one to be taken into 
account through a single failure threshold, and 
crown crack opening could not be considered.  

This is the reason why a more 
sophisticated cellular automaton was 
developed, in which each cell state could take 
a continuous value between 0 (undamaged) to 
τ0 (totally damaged in shear). This 
improvement allowed the introduction of a 
second threshold, corresponding to slab 
failure, in order to better take into account the 
two basic steps involved in slab avalanche 
triggering. The first results [Faillettaz et al. 
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(2002)] nicely reproduced the features of slab 
avalanches, in which a well defined starting 
zone was clearly evidenced, triggering in turn 
downslope a triangle-shaped long range 
cascading cell failure zone. The model 
reproduced scale invariant size distributions 
only if some randomness was introduced in 
slab rupture thresholds [Faillettaz (2003)]. In 
more recent developments [Faillettaz et al. 
(2004)] it was shown to reproduce field 
observations (and more particularly the 
measured power law exponent values), and to 
apply not only to slab avalanches, but also to 
other gravitational failures. 

After a summary of the last results 
obtained by this simulation, the present paper 
discusses possible applications of the model 
to the understanding of artificial triggerings, 
and to avalanche risk evaluation. 
 
2.  THE MODEL  
  
Slab release can be described as a first 
approximation by the succession of four main 
steps [Louchet and Duclos (2006)]: i) 
nucleation of a basal crack, ii) expansion of 
the basal crack, iii) nucleation of a crown 
crack, and iv) expansion of the crown crack. 
Simple calculations can be made on this basis 
within the assumption of a shear disturbance 
in the weak layer separating an homogeneous 
slab from an homogeneous substrate [e.g. 
McClung (1981), Louchet (2001)]. Despite 
interesting qualitative results, such simplified 
approaches cannot predict avalanche sizes, 
owing to the large variability of the snowpack 
properties.  

The present model is a typical 
statistical physics approach. The spatial 
variability of snow properties is taken into 
account through the introduction of 
randomness in a discretized 2-d network 
mimicking the weak layer. The model 
incorporates the physics of triggering through 
the use of two different failure modes, 
corresponding to two different failure 
thresholds: a first one for the weak layer shear 
failure, that controls both basal crack 
nucleation and expansion, and another one for 
slab failure, that controls crown crack 
nucleation and expansion.  

The proximity to failure of a given cell 
is defined by a single variable ζi, that can take 
continuous values, from 0 to τ0, i.e. from 
undamaged to totally failed. Periodic boundary 
conditions are taken in the horizontal direction. 

The automaton may be run in different ways, 
giving equivalent results. For instance, it may 
be initialized to zero (i.e. totally undamaged). 
In this case, during each run, load increments 
∆ζ are scattered at random on the network. A 
given shear threshold value τ0 is taken for 
each run. A given cell fails in shear when its ζi 
value exceeds the threshold value, which 
brings the ζi value back to zero. The excess ζi 
value (as well as further load increments) is 
then equally redistributed onto its unfailed first 
neighbours (i.e. the simulation is 
"conservative"). 

A failure of the second type occurs 
between a cell i and one of its neighbours j 
(located above or aside the considered cell) 
when the difference ζi-ζj  exceeds a slab 
rupture threshold σ0. In this case, the two 
involved cells are no more considered as 
neighbours, and redistribution of excess load 
between these cells becomes forbidden. As a 
consequence of load redistribution rules, the 
model is polarised, i.e. the x and y directions 
have different behaviours, which simulates the 
slope direction. A peculiarity of our model 
relative to other avalanche or sandpile 
simulations [references in part 1, Fyffe and 
Zaiser (2004), Kronholm and Birkeland (2005)] 
is that, in close agreement with the mechanics 
of snow slab failures, we introduced a second 
failure mode controlled by a finite slab strength 
threshold. The basal shear failure controls 
indeed the avalanche occurrence, whereas 
the slab rupture controls the avalanche size. 

Another difference with previous 
studies is that the simulation is conservative, 
i.e. there is no healing on a broken cell. In 
such a stress-driven simulation, the system is 
ineluctably brought to a final macroscopic 
instability, defined as the stage at which a 
macroscopic shear failure (labelled MS in the 
following, for "macroscopic shear event") 
occurs and expands up to the system size. We 
observe in our simulations that every time a 
MS event occurs, a remaining "C-cluster" 
remains within the MS cluster, that is made of 
cells that are still unbroken in terms of slab 
rupture (e.g. see figure 5). By analogy with the 
failure patterns observed in the field, we 
choose the size of the unbroken C-cluster as 
the relevant parameter to measure the size of 
the triggering zone. We checked that this 
measure is not affected by the finite size of the 
system. By contrast, the MS event simulates 
the cascading effect induced by the initial 
snow slab failure, and is not considered here. 
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The system is reinitialised before each 
run taking a new strength threshold at random 
from a uniform distribution in an interval 
between ∆ζ and the slab threshold σ0. Picking 
up the size of the C-cluster for each run from 
thousands of runs leads to power law 
distributions of slab failure sizes (figure 3). 
Among these runs, those with small slab 
thresholds correspond to small starting zones.  

 

 
Figure 3: Distribution of avalanche sizes 
obtained from the cellular automaton with 
αmax=0.5 (see text), reproducing avalanche 
field data. 
 

 
Figure 4: Influence of αmax on the value of the 
power law exponent. The exponent value for 
snow avalanche non-cumulative area 
distributions (i.e. probability distribution 
functions) b = 2.2 correspond to αmax ≈ 0.5. 

The power law exponents given by the 
automaton can be varied by tuning a single 
parameter, defined by αmax=max[σ0/τ0], i.e. the 

maximum value of the ratio of slab rupture to 
weak layer shear failure thresholds, that 
characterises the strength distribution from 
which the slab failure threshold is taken at 
random at each run. This parameter is a 
possible measure of the cohesive anisotropy 
of the material. A number of other gravitational 
failures also obey a power law distribution. By 
tuning αmax, the range of observed values for 
the scaling exponents of these systems can 
be reproduced (figure 4). The exponent value 
of 2.2, characteristic of slab avalanche non-
cumulative area distributions (corresponding 
to exponents of 3.4 ± 0.1 for probability 
distribution functions of widths L, and 2.4 for 
cumulative distributions of widths L, as shown 
in figure 2), is obtained for αmax =0.45 to 0.55, 
which lies between those for landslides and for 
rockfalls [Dussauge et al. 2003, Rothman et 
al. 1994]. Such αmax values allow an inverse 
estimation of the respective anisotropies of the 
involved materials. αmax values close to unity 
correspond to isotropic materials, suggesting 
that the more layered the material is, the 
smaller the αmax value, i.e. the larger the b 
value. In other words, the more layered the 
material is, the more numerous the small 
starting zones as compared to the big ones. 
Rockfalls correspond to αmax≈0.8, favouring 
large sized events, whereas the value for 
landslides is of about 0.3 to 0.4, probably due 
to a strong tendency for strain softening.  

For the simple geometry of slab 
avalanches, αmax <1 suggests a slab strength 
smaller than the basal shear resistance. This 
finding seems at first glance to contradict the 
"general" agreement that crown crack opening 
is a consequence of a relatively easier basal 
failure. The answer is twofold:  

i) On the field, the roughness of the 
shear surface, possible defect healing, and the 
presence of anchoring points make the 
macroscopic shearing process more difficult 
than what occurs during laboratory shear 
tests. Such effects have no influence on slab 
failure initiation, as it essentially occurs in 
tension, except for "anchoring points" (trees, 
outcrops) that may by contrast facilitate crown 
crack opening. 

ii) The snow cover experiences a 
particular loading mode: the weak layer 
experiences the whole downhill component of 
the snow weight, whereas tensile stresses 
responsible for crown crack opening only arise 
from stress gradients (this is the reason why 
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crown crack opening is controlled in our 
automaton by the difference in ζ values 
between two neighbour cells). These 
differential slab stresses are usually much 
smaller than shear stresses acting on basal 
planes, and our finding that the right power 
law exponent is found when the corresponding 
threshold is smaller than that for basal failure 
is not surprising.  

 
3.  APPLICATION TO ARTIFICIALLY 
TRIGGERED AVALANCHES 
  

The automaton described above 
reproduces the scale-free distribution of 
natural avalanches: the variations of the 
parameter ζi may indeed represent either the 
local load increase on a cell due to a snowfall, 
or the decrease of the weak layer strength due 
to metamorphism. The same automaton can 
also be used to simulate avalanches on 
particular paths, introducing slope changes 
through local changes in shear and slab failure 
thresholds, keeping the αmax value constant. 
Such "personalised" simulations, after some 
parameter calibration in order to fit available 
field data of a given avalanche site, may be 
run thousands of times. This procedure would 
provide to avalanche flow simulations trustable 
initial conditions, equivalent to those that 
would have required thousands of years of 
field measurements  

It may also simulate blast triggered or 
skier-triggered avalanches. For this purpose, a 
group of cells can be artificially damaged 
around the blast location, or along the skier's 
trajectory.  

An example of several skiers gliding 
down a reasonably safe slope (dark and pale 
blue cells only) is shown in Figure 5. The 
skier's weight is negligible as compared to that 
of the slab, but the local pressure under the 
skis may locally collapse the weak layer. In the 
simulation, the system is initialized randomly. 
The additional damage due to the skier is 
performed by an increase of the ζi value by 
one ∆ζi increment on each cell on which the 
skier actually travels. This damage may 
spontaneously extend through a "domino 
effect". 

It can be easily imagined that a given 
trajectory taken at random may entirely cross 
the system without any avalanche release if 
the skier is lucky enough not to cross areas 
that are already significantly damaged. But 
another path, possibly very close to the 

previous one, may result in a sudden 
triggering. In the present case, the cells on 
each skier trajectory turn from dark blue to 
green, or from pale blue to yellow. Some of 
them may turn to yellow or red due to a 
"domino effect". Slab release takes place 
when a fourth skier crosses the (already 
damaged) trajectory of a previous one: an 
incipient cluster of red cells form, that readily 
expands and trigger a large scale instability.  

 

 
 

 
 
Figure 5: Avalanche triggered by several 
skiers. The avalanche starts in the vicinity of 
the crossing between the large amplitude track 
(that could represent the skier climbing track) 
and the central one (downhill track). 
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In order to take into account the fact that, 
on stiffer slabs, the damage may extend at 
some distance away from the skier's path, the 
damage rule can be modified: instead of 
damaging the cells on which the skier actually 
travels, the direct damage produced by the 
skier is extended to further neighbour cells. An 
avalanche may then be released if the 
damaged zones overlap, even if the skiers 
trajectories had not crossed each other (see 
Figure 6).  

 

 
 

 
 
Figure 6: Example in which the direct damage 
produced by the skier is extended to further 
neighbour cells (here 3 cells). In this particular 
case, an avalanche is released even if the 
skier downhill tracks had not crossed each 
other. 

  
4.  SUMMARY AND CONCLUSION 

 
The present 2-dimensional 2-threshold cellular 
automaton incorporates at the local scale the 
physics of weak layer and slab failure 
mechanisms through two specific failure 
thresholds. The basal shear failure controls 
the avalanche occurrence, whereas the slab 
rupture controls the avalanche size. The 
system spatial variability is accounted for 
through the discretization of the network and 
the random character of loading. The temporal 
variability is introduced in terms of random 
changes of failure thresholds at each run. The 
automaton contains a single physically-based 
tuning parameter, related to the failure 
strength anisotropy of the material. It 
reproduces the scale-invariant size 
distributions of slab avalanches starting zones, 
but also of other gravitational failures, through 
slight variations of this parameter. 
This automaton can now be used to simulate 
avalanche release in various particular cases. 
The influence of various parameters on blast-
triggered and skier triggered avalanches can 
be investigated on this basis, mimicking the 
effects of blast pressure or extension, or those 
of slab depth and stiffness through the local 
damage extension and strength, as shown 
here in the case of skier-triggered avalanches. 
It may also be used to provide initial conditions 
in avalanche flow simulations in particular 
slopes. Possible applications of the automaton 
to educational purposes may be 
contemplated. 
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